National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Preparation of Nanocomposites of Metal Oxides in Plasma Polymer and Study of Their Properties
Polonskyi, Oleksandr ; Biederman, Hynek (advisor) ; Novák, Stanislav (referee) ; Kadlec, Stanislav (referee)
Title: Preparation of Nanocomposites of Metal Oxides in Plasma Polymer and Study of Their Properties Author: Oleksandr Polonskyi Department: Department of Macromolecular Physics, MFF UK Supervisor of the doctoral thesis: Prof. RNDr. Hynek Biederman, DrSc. Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University in Prague Abstract: This thesis is devoted to a study of nanocomposite films Al (Al oxide)/plasma polymer prepared by various techniques using magnetron sputtering, plasma polymerization and cluster beam deposition. The formation and deposition of metal/metal oxide nanoclusters using a gas aggregation cluster source (GAS) was also considered. The role of low concentration of oxygen in the aggregation gas on the process of Al and Ti cluster deposition was studied. Properties of the nanoclusters and nanocomposite films were characterized by various techniques. Morphology of the nanocomposites was examined by AFM, TEM or HRTEM and SEM. Elemental analysis and chemical composition of the films were studied by XPS and FTIR. Optical characterization of the prepared films was done by UV-Vis spectroscopy and spectroscopic ellipsometry. It has been shown that using GAS nanocomposite Al(AlxOy)/C:H may be prepared. Keywords: nanocomposite thin film, plasma polymer, metal...
Nanoclusters coatings for biomedical applications
Divín, Radek ; Kylián, Ondřej (advisor) ; Hanuš, Jan (referee)
Title: Nanoclusters coatings for biomedical applications Author: Radek Divín Department: Department of Macromolecular Physics (110. 32-KMF) Supervisor: RNDr. Ondřej Kylián, Ph.D. Abstract: The copper nanocluster films were prepared with the aid of the gas cluster aggregation source based on the principle of material sputtering from the magnetron target to the relatively high pressure of the working gas (Ar). The nanocluster films prepared in this way were subsequently overlapped with the layer of plasma polymer deposited by RF magnetron sputtering from the nylon polymer target in the atmosphere of the working gas (Ar, 2 Pa). A repetition of this procedure enabled to prepare nanocomposite layers having a multilayer character. These layers were subsequently investigated with regard to their morphology, chemical composition, surface wettability and optical properties. The chemical composition of the surface layer formed by nanocomposite films was determined by the X-ray photoelectron spectroscopy (XPS). It turned out that the chemical surface composition of prepared nanocomposites was not markedly influenced by the presence of the Cu nanoclusters. The morphology of prepared films was studied by the scanning electron microscopy (SEM) and the atomic force microscopy (AFM), which showed that the resulting...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.